skip to main content


Search for: All records

Creators/Authors contains: "Lynett, P.J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Numerous field observations of tsunami-induced eddies in ports and harbours have been reported for recent tsunami events. We examine the evolution of a turbulent shallow-water monopolar vortex generated by a long wave through a series of large-scale experiments in a rectangular wave basin. A leading-elevation asymmetric wave is guided through a narrow channel to form a flow separation region on the lee side of a straight vertical breakwater, which coupled with the transient flow leads to the formation of a monopolar turbulent coherent structure (TCS). The vortex flow after detachment from the trailing jet is fully turbulent ( $Re_h \sim O(10^{4}\text {--}10^{5}$ )) for the remainder of the experimental duration. The free surface velocity field was extracted through particle tracking velocimetry over several experimental trials. The first-order model proposed by Seol & Jirka ( J. Fluid Mech. , vol. 665, 2010, pp. 274–299) to predict the decay and spatial growth of shallow-water vortices fits the experimental data well. Bottom friction is predicted to induce a $t^{-1}$ azimuthal velocity decay and turbulent viscous diffusion results in a $\sqrt {t}$ bulk vortex radial growth, where $t$ represents time. The azimuthal velocity, vorticity and free surface elevation profiles are well described through an idealised geophysical vortex. Kinematic free surface boundary conditions predict weak upwelling in the TCS-centre, followed by a zone of downwelling in a recirculation pattern along the water column. The vertical confinement of the flow is quantified through the ratio of kinetic energy contained in the secondary and primary surface velocity fields and a transition point towards a quasi-two-dimensional flow is identified. 
    more » « less